We are very happy to introduce the newest member of the Mechanical Equipment team, Chip Heinemann.

Chip has a long history in the commercial HVAC business. He co-founded Eitel Heinemann Mechanical Services (EHMS) in 2004, where he provided strategic planning, construction HVAC sales, and conceptual engineering services.

Over the last 14 years, they built a highly skilled and qualified mechanical contracting company that served the commercial, industrial, healthcare, and institutional industries all across the greater Chicagoland area.

Prior to EHMS, Chip was a Vice President at the V.A. Smith Company for 10 years. He has a BS in Thermal and Environmental Engineering from Southern Illinois University.

While at EHMS, Chip was a frequent customer of Mechanical Equipment. When he decided to transition to the equipment sales side of the industry, it was a no-brainer to invite him to join our team.

Dennis O’Shaughnessy, Mechanical Equipment’s founder, said, “We are thrilled to have Chip join us. He knows our business and the product lines inside and out. We’ve seen his work ethic and drive as he grew his business and knew he would be a great fit with our culture. I also think he’s a tremendous asset to our customers because he can offer firsthand knowledge from the contracting / installation perspective, and consult on projects to solve “real-world” issues that often arise on projects. He brings a lot more to the table than simply selling equipment!”

“After closing my business, I wanted to do something new, while still using my strengths and knowledge of our industry. I’ve known Dennis for a very long time and when he offered me a position, I saw it as an exciting and new opportunity. It will be fun to sit on the other side of the fence as a sales representative,” Chip said. “I know the products because I bought and installed them for so many years, and I bring a unique perspective to the team from having been on the customer side. I’m an engineer and I know how the products that Mechanical Equipment represents are best applied, because I have used them myself on many, many projects in Chicagoland, without any issues! That impressed me.”

Chip will be reaching out to our customers to introduce himself soon, so please help us welcome him on board!

Patterson-Kelley is one of our most trusted lines of heat transfer equipment like boilers and water heaters. They recently published this article on boiler turndown rates that we thought you would find it of interest.

 

Operate at Peak Efficiency

Thermal efficiency is simply the chemical energy added to the boiler divided by the energy added to the boiler water.  As more energy is transferred from the hot gas into the boiler water, the thermal efficiency increases and the temperature of the hot gas decreases.

Almost all boilers are tuned to add excess air, which ensures ideal combustion of the fuel for proper air-fuel mixing. The excess air can also prevent the burner from overheating by “pushing” the combustion flames off the burner.

When energy from the hot gasses is transferred to the boiler water, the gas temperature dips below the dew point, which causes vapor to become liquid. The energy released from the conversion is picked up by the boiler water and results in a significant boost in efficiency. Every pound of water converted into liquid adds approximately 1000 BTUs to the boiler water. However, dry flue losses and loss of vapor can result in energy loss.

Energy loss can be readily calculated if the amount of CO2 and O2 in the flue gas and the stack temperature is known.

With the evolution of boiler technology, manufacturers have found a way to offer units with multiple firing rates, and units that can modulate seamlessly between fixed low fire rates and fixed high fire rates. The fixed fire rates are defined as the boiler turndown capacities, and modulation is accomplished by reducing the air and gas flow into the boiler.

The benefit of this modulation is threefold; it reduces cycle losses, it reduces the wear on the components, and it can potentially lead to higher thermal efficiencies.

Impact of Turndown

This begs the fundamental question – wouldn’t a boiler with extreme turndowns be much more efficient than one with 5:1 turndown?  The answer to that is NO!

To achieve high turndowns, the boilers are tuned to deliver greater amounts of excess air at low firing rates to keep the burner from overheating. The additional excess air will significantly reduce the dew point of the water in the flue gas and alter the losses in the dry gas. To illustrate this effect, the example used in Figure A is updated to reflect a 20:1 turn down where the O2 is set to 11% (corresponding to a CO2 of 5.6% and 97% excess air).  The results are highlighted in Figure B below.

Note that the dew point has been lowered from 130.6° F to 117° F  and the boiler is no longer in the condensing range.  This represents a 3.7% DECREASE in overall efficiency and this is just the beginning of the bad news! 

When excess air well above 50% is used in the boiler, it impacts the stability of the combustion flame which can lead to excessive flame failures, nuisance trips and cycle losses.

The Analysis

Realistic boiler modulation rates have helped improve the overall boiler system efficiency from reduced cycle losses and increased thermal effi­ciencies. Extreme turndown produces the opposite effect. Boil­er plant designs must factor in actual (not extrap­olated) boiler efficiencies through the firing range of the equipment and matching the expected plant loads with the right boiler size selections.

Interested in learning more about Patterson-Kelley boilers or how turndown rates affect efficiency? Give us a call at 800-355-7061 and we’d be happy to help.